Quasideterminant Characterization of MDS Group Codes over Abelian Groups

نویسندگان

  • A. A. Zain
  • B. Sundar Rajan
چکیده

A group code defined over a group G is a subset of Gn which forms a group under componentwise group operation. The well known matrix characterization of MDS (Maximum Distance Separable) linear codes over finite fields is generalized to MDS group codes over abelian groups, using the notion of quasideterminants defined for matrices over non-commutative rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic characterization of MDS group codes over cyclic groups

An (n, k) group code over a group G is a subset of G which forms a group under componentwise group operation and can be defined in terms of n — k homomorphisms from G to G. In this correspondence, the set of homomorphisms which define Maximum Distance Separable (MDS) group codes defined over cyclic groups are characterized. Each defining homomorphism can be specified by a set of k endomorpbisms...

متن کامل

Constacyclic Codes over Group Ring (Zq[v])/G

Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...

متن کامل

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

Asymptotically Good Codes Over Non-Abelian Groups

In this paper, we show that good structured codes over non-Abelian groups do exist. Specifically, we construct codes over the smallest non-Abelian group D6 and show that the performance of these codes is superior to the performance of Abelian group codes of the same alphabet size. This promises the possibility of using non-Abelian codes for multi-terminal settings where the structure of the cod...

متن کامل

Fq-Linear Cyclic Codes over Fq: DFT Characterization

Codes over Fqm that form vector spaces over Fq are called Fq-linear codes over Fqm . Among these we consider only cyclic codes and call them Fq-linear cyclic codes (FqLC codes) over Fqm . This class of codes includes as special cases (i) group cyclic codes over elementary abelian groups (q = p, a prime), (ii) subspace subcodes of Reed-Solomon codes and (iii) linear cyclic codes over Fq (m=1). T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1998